- 1. Subject name / subject module: Measurement systems
- 2. Lecture language: English
- 3. The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- **4.** Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Szychta Leszek, prof. dr hab. inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

	Teaching activities with the tutor																			
Mode		Form of classes												Total						
of study		SOW	ECTS	Laboratory work	sow	ECTS		sow	ECTS		sow	ECTS		sow	ECTS	 sow	ECTS	 SOW	ECTS	ECTS
Full-time studies				38	50	25														25
Part-time studies						3,5														3,3
Credit rigor				Graded assig	nmer	nt														

6. Student workload – ECTS credits balance

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity	Hourly student workload (full-time
(please specify relevant work for the subject)	studies/part-time studies)
Participation in laboratory classes	38
Preparing homeworks	30
Preparing reports	18
Participation in an exam / graded assignment / final grading	2
Total student workload (TSW)	88
ECTS credits	3,5
* Student's workload related to practical forms	88
Student's workload in classes requiring direct participation of academic teachers	38

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

Circuit theory

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

Spe	cific learning outcomes for the subject			Methods for testing of	
Outcome symbol	Outcome description	Form	Teaching method	(checking, assessing) learning outcomes	
		Knowle	dge		
K_W01 K_W05	Student knows and understands at an advanced level the methods and theories explaining the complex dependencies in the measurement systems to formulate and solve tasks related to mechatronics Student has basic knowledge of automation, electronics and electrical engineering, necessary to understand measurement systems of mechatronic systems and to apply this leaveledee in practice	Laboratory work	inquiry methods	Laboratory tasks, reports with an emphasis on drawing conclusions.	
	·····	Skills	S	I	
K_U15	Student is able to assess the suitability and choose the appropriate methods tools and materials to solve a simple measurement systems tasks in the field of Mechatronics.	Laboratory work	inquiry methods	Laboratory tasks, reports with an emphasis on drawing conclusions.	
К_U08	Student is able to plan and carry out experiments, including measurements and				

computer simulations, interpret the obtained		
results and draw conclusions for		
measurement systems		

9. Assessment rules / criteria for each form of education and individual grades

0% - 50%	ndst	81% - 90%	db
51% - 70%	dst	91% - 93%	db+
71% - 80%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
Reports	bdb(5)	5*50%	2,5
Activity during classes	Example: db, dst, bdb (4, 3, 5)	average (4+3+5)/3=4 4*20%=0,8	0,8
Homeworks	Example: ndst, db, dst (2, 4, 3)	average (2+4+3)/3=3 3*20%=0,6	0,6
Attendance	on 80% classes	0,8*5=4 -> 4*10%=0,4	0,4
Final result			4,3

10. The learning contents with the form of the class activities on which they are carried out

(Laboratory work)

- 1. Basic metrology size and measurement, units, basic concepts;
- 2. Measurement systems accuracy, error and measurement uncertainty;
- 3. Propagation of measurement uncertainty;
- 4. Measurement methods classification and description;
- 5. Acquire and process signals. Measurement of electrical and mechanical size;
- 6. Co-ordinates metrology selection of measuring instruments;
- 7. Optical measurement of geometrical quantities;
- 8. Monitoring the accuracy of measuring instruments;
- 11. Required teaching aids

Laboratory classes - specialist laboratory

- 12. Literature:
 - a. Basic literature:
 - 1. Lu Guojun, Multimedia database management systems, Artech House, INC, 1999
 - 2. Allan Morris, Measurement and Instrumentation Principles, BH, 2001
 - **a.** Supplementary literature:
 - John P. Bentley, Principles of Measurement Systems, Pearson Prentice Hall, 2005
 - **b.** Internet sources:
- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education

Form of education	Name and surname
1. Laboratory classes	Szychta Leszek, prof. dr hab. inż.